The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Professor Malin Malmsjö, MD, PhD. Photo.

Malin Malmsjö

Professor

Professor Malin Malmsjö, MD, PhD. Photo.

Wound edge microvascular blood flow during negative-pressure wound therapy: examining the effects of pressures from -10 to -175 mmHg.

Author

  • Ola Borgquist
  • Richard Ingemansson
  • Malin Malmsjö

Summary, in English

BACKGROUND: Negative-pressure wound therapy is believed to accelerate wound healing by altered wound edge microvascular blood flow. The current standard negative pressure is -125 mmHg. However, this pressure may cause pain and ischemia and often has to be reduced. The aim of the present study was to examine the blood flow effects of different levels of negative pressures (-10 to -175 mmHg). METHODS: Wound edge microvascular blood flow was studied in a peripheral wound model in eight 70-kg pigs on application of negative-pressure wound therapy. Blood flow was examined, using laser Doppler velocimetry, in subcutaneous and muscle tissue at 0.5, 2.5, and 5 cm from the wound edge. RESULTS: Blood flow changed gradually with increasing negative pressure until reaching a steady state. Blood flow decreased close to the wound edge (0.5 cm) and increased farther from the wound edge (2.5 cm). At 0.5 cm, blood flow decreased 15 percent at -10 mmHg, 64 percent at -45 mmHg, and 97 percent at -80 mmHg. At 2.5 cm, blood flow increased 6 percent at -10 mmHg, 32 percent at -45 mmHg, and 90 percent at -80 mmHg. Higher levels of negative pressure did not have additional blood flow effects (p > 0.30). No blood flow effects were seen 5 cm from the wound edge. CONCLUSIONS: Blood flow changes gradually when the negative pressure is increased. The levels of pressure for negative-pressure wound therapy may be tailored depending on the wound type and tissue composition, and this study implies that -80 mmHg has similar blood flow effects as the clinical standard, -125 mmHg.

Department/s

  • Ophthalmology, Lund
  • Thoracic Surgery

Publishing year

2010

Language

English

Pages

502-509

Publication/Series

Plastic and Reconstructive Surgery

Volume

125

Issue

2

Document type

Journal article

Publisher

Lippincott Williams & Wilkins

Topic

  • Surgery

Status

Published

ISBN/ISSN/Other

  • ISSN: 0032-1052