The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Professor Malin Malmsjö, MD, PhD. Photo.

Malin Malmsjö

Professor

Professor Malin Malmsjö, MD, PhD. Photo.

Wound contraction and macro-deformation during negative pressure therapy of sternotomy wounds.

Author

  • Christian Torbrand
  • Martin Ugander
  • Henrik Engblom
  • Håkan Arheden
  • Richard Ingemansson
  • Malin Malmsjö

Summary, in English

ABSTRACT: BACKGROUND: Negative pressure wound therapy (NPWT) is believed to initiate granulation tissue formation via macro-deformation of the wound edge. However, only few studies have been performed to evaluate this hypothesis. The present study was performed to investigate the effects of NPWT on wound contraction and wound edge tissue deformation. METHODS: Six pigs underwent median sternotomy followed by magnetic resonance imaging in the transverse plane through the thorax and sternotomy wound during NPWT at 0, -75, -125 and -175 mmHg. The lateral width of the wound and anterior-posterior thickness of the wound edge was measured in the images. RESULTS: The sternotomy wound decreased in size following NPWT. The lateral width of the wound, at the level of the sternum bone, decreased from 39 ± 7 mm to 30 ± 6 mm at -125 mmHg (p = 0.0027). The greatest decrease in wound width occurred when switching from 0 to -75 mmHg. The level of negative pressure did not affect wound contraction (sternum bone: 32 ± 6 mm at -75 mmHg and 29 ± 6 mm at -175 mmHg, p = 0.0897). The decrease in lateral wound width during NPWT was greater in subcutaneous tissue (14 ± 2 mm) than in sternum bone (9 ± 2 mm), resulting in a ratio of 1.7 ± 0.3 (p = 0.0423), suggesting macro-deformation of the tissue. The anterior-posterior thicknesses of the soft tissue, at 0.5 and 2.5 cm laterally from the wound edge, were not affected by negative pressure. CONCLUSIONS: NPWT contracts the wound and causes macro-deformation of the wound edge tissue. This shearing force in the tissue and at the wound-foam interface may be one of the mechanisms by which negative pressure delivery promotes granulation tissue formation and wound healing.

Department/s

  • Ophthalmology, Lund
  • Clinical Physiology (Lund)
  • Thoracic Surgery
  • Lund Cardiac MR Group

Publishing year

2010

Language

English

Publication/Series

Journal of Cardiothoracic Surgery

Volume

5

Document type

Journal article

Publisher

BioMed Central (BMC)

Topic

  • Surgery
  • Cardiac and Cardiovascular Systems

Status

Published

Research group

  • Lund Cardiac MR Group

ISBN/ISSN/Other

  • ISSN: 1749-8090