The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Magnus Cinthio, MSc, PhD. Photo.

Magnus Cinthio

Senior lecturer

Magnus Cinthio, MSc, PhD. Photo.

Intra-Observer Variability of Longitudinal Movement and Intramural Shear Strain Measurements of the Arterial Wall using Ultrasound Non-Invasively in vivo

Author

  • Magnus Cinthio
  • Åsa Rydén Ahlgren

Summary, in English

Using a recently developed high-resolution noninvasive ultrasonic method, we recently demonstrated that the intima-media complex of the common carotid artery show a bidirectional multiphasic longitudinal displacement of the same magnitude as the diameter change during the cardiac cycle. The longitudinal movement of the adventitial region was smaller, thus, we identified shear strain and, thus, shear stress, within the arterial wall. The aim of this study was to evaluate the intra-observer variability of measurement of the longitudinal displacement of the intima-media complex and the intramural shear strain of the common carotid artery in vivo using the new ultrasonic method. The evaluation was carried out by comparing two consecutive measurements on the common carotid artery of 20 healthy human subjects. According to the method of Bland Altman, we show that the systematic and random differences for the different phases of movement are acceptable in comparison to the measured displacement and no significant differences between the two measurements could be detected (p > 0.05 for all measured parameters). The coefficient of variation (CV) for measurement of the different phases of movement was ≤16%, including short-term physiologic variations. The higher variability in the measurement of the intramural shear strain (CV = 24%) has several explanations, which are discussed. In conclusion, this study shows that the present first ultrasonic method for high-resolution measurement of the longitudinal movement of the arterial wall is reliable and satisfactory for the further research of the longitudinal movement of the arterial wall in vivo. Further studies on the longitudinal movement of the arterial wall are important for developing an improved understanding of the physiology and the pathophysiology of the cardiovascular system.

Department/s

  • Department of Biomedical Engineering
  • Clinical Physiology and Nuclear Medicine, Malmö

Publishing year

2010

Language

English

Pages

697-704

Publication/Series

Ultrasound in Medicine and Biology

Volume

36

Issue

5

Document type

Journal article

Publisher

Elsevier

Topic

  • Medical Laboratory and Measurements Technologies

Status

Published

Research group

  • Clinical Physiology, Malmö

ISBN/ISSN/Other

  • ISSN: 0301-5629