The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Bodil Gesslein, MSc, PhD. Photo.

Bodil Gesslein

Visiting research fellow

Bodil Gesslein, MSc, PhD. Photo.

Protein kinase C in porcine retinal arteries and neuroretina following retinal ischemia-reperfusion.

Author

  • Bodil Gesslein
  • Lotta Gustafsson
  • Angelica Wackenfors
  • Fredrik Ghosh
  • Malin Malmsjö

Summary, in English

PURPOSE: Identification of the intracellular signal-transduction pathways activated in retinal ischemia may be important in revealing novel pharmacological targets. To date, most studies have focused on identifying neuroprotective agents. The retinal blood vessels are key organs in circulatory failure, and this study was therefore designed to examine the retinal vasculature separately from the neuroretina. METHODS: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. Protein kinase C (PKC)alpha, PKCbeta1, and PKCbeta2 mRNA levels, and protein expression were determined using real-time PCR, western blot, and immunofluorescence staining techniques. RESULTS: The retinal arteries could easily be dissected free and studied separately from the neuroretina in this porcine model. The PKCalpha, PKCbeta1, and PKCbeta2 mRNA levels tended to be lower in ischemia-reperfused than in sham-operated eyes in both the retinal arteries and the neuroretina. This was most prominent after 5 h, and less pronounced after 12 h and 20 h of reperfusion. Likewise, the protein levels of PKCalpha, PKCbeta1, and PKCbeta2 were slightly lower following ischemia-reperfusion when compared to sham-operated eyes. PKCalpha, PKCbeta1, and PKCbeta2 immunostaining were observed in bipolar cells of the neuroretina and in endothelial cells, and to a low extent in the smooth muscle layer, of the retinal arteries. CONCLUSIONS: Retinal ischemia followed by reperfusion results in lower levels of PKC in both the neuroretina and retinal arteries. New targets for pharmacological treatment may be found by studying the retinal vasculature so as to identify the intracellular signal-transduction pathways involved in the development of injury following retinal circulatory failure.

Department/s

  • Medicine, Lund
  • Ophthalmology, Lund
  • Division of Microbiology, Immunology and Glycobiology - MIG

Publishing year

2009

Language

English

Pages

737-746

Publication/Series

Molecular Vision

Volume

15

Issue

Apr 13

Document type

Journal article

Publisher

Molecular Vision

Topic

  • Biochemistry and Molecular Biology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1090-0535