

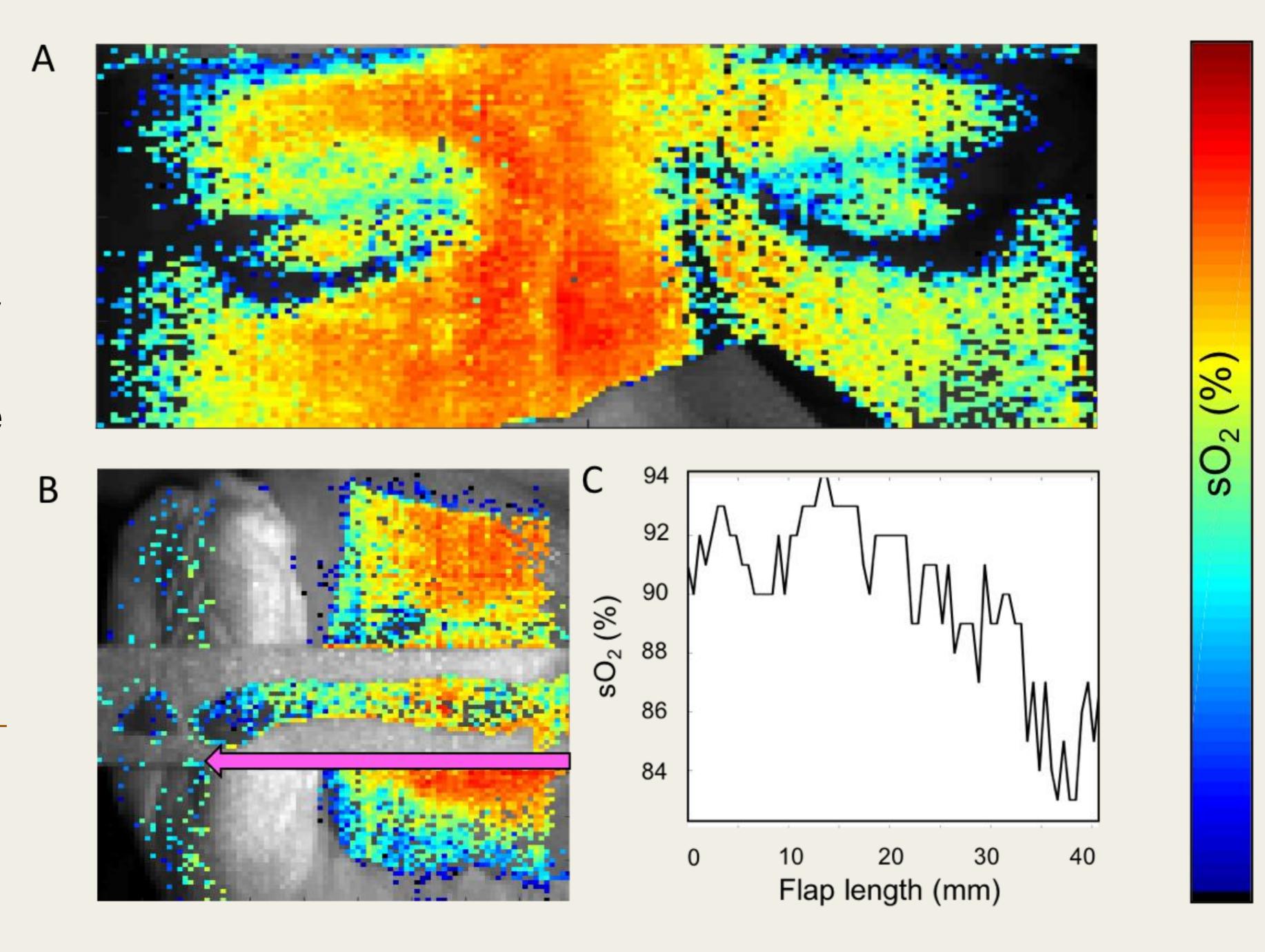
# Blood perfusion and oxygenation in human eyelid skin flaps examined by laser speckle contrast imaging and hyperspectral imaging

## - importance of flap length

JOSEFINE BUNKE<sup>1,2</sup>, PERNILLA ROSENQVIST<sup>1,2</sup>, ABOMA MERDASA<sup>1,3</sup>, MALIN MALMSJÖ<sup>1</sup>

<sup>1</sup>DEPARTMENT OF CLINICAL SCIENCES LUND, OPHTHALMOLOGY, LUND UNIVERSITY AND SKÅNE UNIVERSITY HOSPITAL, LUND, SWEDEN

<sup>2</sup>DEPARTMENT OF RESEARCH AND DEVELOPMENT REGION KRONOBERG, SWEDEN


<sup>3</sup>DEPARTMENT OF PHYSICS, LUND UNIVERSITY, SWEDEN

### Conclusion

Perfusion decreases considerably over the length of the upper eyelid flap, while oxygenation ( $sO_2$ ) is preserved to a greater extent. These results thus indicate that the remaining blood supply of the upper eyelid is sufficient to maintain adequate  $sO_2$  of the flap despite the drop in perfusion.

## Objective

Excision of periocular tumors often requires reconstructive surgery with skin grafts or flaps. Flap survival is dependent on sufficient blood perfusion and sO<sub>2</sub>. The purpose of the present study was to investigate how the perfusion and sO<sub>2</sub> in human eyelid skin flaps is affected by flap length.



**Figure 1.** Representative example of hyperspectral imaging (HSI) of the eye region and an eyelid flap with a colored scale for guidance (of A and B). A. HSI of the right and left eye, the colors representing oxygen saturation ( $sO_2$ ) of the periocular skin. B. Eyelid flap with the free end to the left and the arrow indicating the length of the flap. Here a gradual decrease in  $sO_2$  is seen as a change of color throughout the flap length. C. A representative example of the decrease of  $sO_2$  over the flap length, here seen in a diagram.

## Methods

100

10 patients scheduled for blepharoplasty were included in the study. The upper eyelid skin was dissected, releasing a ~45 mm long piece of skin, while allowing the ~7 mm wide medial part of the skin to remain attached, to resemble a myocutaneous flap. The eyelids were monitored with laser speckle contrast imaging and hyperspectral imaging to determine the perfusion and sO<sub>2</sub> of the flap.

## Results

Blood perfusion decreased from the base to the tip of the flap. Close to the base (5 mm away), the perfusion was 69 % of the reference value, while at 25 mm from the base it was only 16 %. sO<sub>2</sub> was only slightly reduced along the length of the flap.

#### Contact

Josefine Bunke, MD, Department of Clinical Sciences,
Ophthalmology, Lund University and Skåne University Hospital,
Lund Sweden. Department of Research and Development Region
Kronoberg, Sweden.
josefine.bunke@med.lu.se